

ТЕХНИЧЕСКОЕ ОПИСАНИЕ

ДАТЧИК ТЕМПЕРАТУРЫ И ВЛАЖНОСТИ

ТЕРМИНАЛ-M-LRW

Содержание

1 Описание	3
2 Монтаж и включение Модуля	7
3 Настройка модуля	10
4 Описание информационного пакета	15
5 АТ-команды	18
6 Изготовитель	23
7 Лист регистрации изменений	24

1 Описание

Датчик температуры и влажности (далее — Модуль, внешний вид показан на Рисунке 1.1, основные технические характеристики даны в Таблице 1.1) является устройством, позволяющим контролировать параметры относительной влажности и температуры воздуха и неагрессивного газа в заданном диапазоне с пороговой сигнализацией. Предназначен для непрерывного съема и информирования об изменении контролируемых параметров с передачей в сеть LoRaWAN.

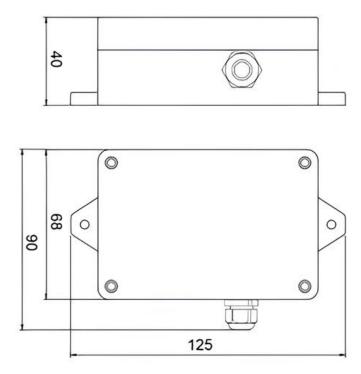


Рисунок 1.1 – Внешний вид Модуля

Структура обозначения артикула Модуля TEРМИНАЛ-M-LRW:

- 1 вариант исполнения корпуса;
- 2 тип устройства (SHT Датчик температуры и влажности);
- 3 вариант исполнения питания согласно таблице 1.2;
- 4 дополнительная комплектация. После точки цифрами обозначается количество установленного типа комплекта, латинскими буквами тип

21.10.2024 3-24 Редакция 2.12

комплекта. При комплектации несколькими типами комплектов, каждый тип обозначается отдельно по порядку;

5 – предустановленный частотный диапазон.

Таблица 1.1 – Основные технические характеристики

Наименование параметра	Значение
Напряжение питания, В	2,53,7
Энергопотребление:	
- в режиме сна, мкА, не более	16
- в передачи, мА, не более	80
Класс радиоустройства	A / C
(по классификации LoRaWAN)	A/C
Период выхода в радиоэфир, секунд	186400
Выходная мощность радиосигнала, мВт, не	25
более	100 (по запросу)
	RU864-868
Диапазон частот	EU863-870
	KZ865-868
Тип антенны	встроенная
Дальность радиосвязи:	
- прямая видимость, км	до 15
- городская застройка, км	до 5
Интерфейс для настройки	UART, радиоканал
Тип исполнения	с выносным зондом
Среда измерения	воздух, неагрессивные газы
Тип датчика температуры и влажности	SHT30
Интерфейс подключения датчика	I2C
Диапазон измеряемых температур, °С	-40125
Точность измерений, °С	±0,2
Разрешающая способность, °С	0,1
Диапазон измеряемой относительной	0 100
влажности, %RH	0100
Точность измерений, %RH	±2
Разрешающая способность, %RH	1
Количество уставок пороговой сигнализации	4
Пормод одрасо долучите солучите	10
Период опроса датчика, секунд	(изменение по запросу)
Температура эксплуатации, °С	-2085

21.10.2024 4-24 Редакция 2.12

Габаритные размеры, мм, не более	125 x 90 x 40
Степень защиты корпуса	IP65
Масса, кг, не более	0,2
Крепление	к поверхности винтами
Средний срок службы, лет, не менее	10

Питание Модуля осуществляется от установленных заменяемых литий тионил-хлоридных (Li-SOCl2) батарей напряжением 3.6 В.

Таблица 1.2 - Варианты комплектов элементов питания

Обозначение	Емкость,	Типоразмер и кол-во	Маркировка
комплекта (Х)	мАч, не менее	элементов питания	элементов питания
A	1000	1/2AA	ER14250
В	1500	2/3AA	ER14335
С	2400	AA	ER14505
D	1700	2/3A	ER17335
Е	2800	A	ER17505
F	3200	FAT A	ER18505
G	3600	В	ER20505
Н	9000	С	ER26500
I	18000	D	ER34615

Модуль поддерживает частотные диапазоны, указанные в Таблице 1.3.

Таблица 1.3 – Частотные диапазоны

Диапазон	Канал	Частота, МГц	Частота, МГц Модуляция	
			сигнала	сигнала, кГц
	1	868.1	LoRa, MultiSF	125
EU863-870	2	868.3	LoRa, MultiSF	125
EU003-070	3	868.5	LoRa, MultiSF	125
	RX2	869.525	LoRa, SF12	125
	1	868.9	LoRa, MultiSF	125
RU864-868	2	869.1	LoRa, MultiSF	125
	RX2	869.1	LoRa, SF12	125
	1	865.1	LoRa, MultiSF	125
KZ865-868	2	865.3	LoRa, MultiSF	125
KZ005-000	3	865.5	LoRa, MultiSF	125
	RX2	866.7	LoRa, SF12	125

Установка частотного диапазона осуществляется при настройке Модуля на заводе-изготовителе и не может быть изменена в дальнейшем. Модуль поддерживает присвоение МАС-командами дополнительных частот, в рамках своего частотного диапазона.

Модуль имеет возможность настройки минимального и максимального порогового значения (уставки) температуры и влажности. В случае превышения одного, либо нескольких пороговых значений, Модуль незамедлительно отправляет до 5-ти внеплановых экстренных сообщений с «флагом» сигнализации в сеть LoRaWAN, для обработки данных сообщений и информирования персонала о наступлении события. Либо, текущие значения угла температуры и влажности, могут планово передаваться в сеть, с заданной периодичностью.

Модуль обеспечивает установку параметров работы с использованием AT-команд по интерфейсу UART, а также MAC-команд и AT-команд в режиме работы при подаче команд от базовой станции.

Перед началом работы Модуля на объекте, Модуль требуется обязательно настроить (ввести сетевые параметры LoRaWAN, пороговые значения угла и ускорения, и т.д.) согласно пункту 3 данного технического описания.

Примечание:

По желанию Заказчика и при предоставлении Заказчиком необходимой информации (пороговые значения угла и ускорения, и т.д.), Модуль может быть полностью настроен компанией «НОВОУЧЕТ» до установки на объект. После чего, Модуль будет готов к работе и не потребует дополнительных настроек. Останется лишь его смонтировать на объекте. Либо. «НОВОУЧЕТ» предоставлено Заказчику может быть программное обеспечение, для упрощенной самостоятельной настройки Модулей.

2 Монтаж и включение

До монтажа Модуля на объект контроля, следует выполнить его настройку по пункту 3 данного технического описания. После настройки Модуля и до его монтажа на объект, для проверки отправки Модулем сообщений в сеть LoRaWAN, рекомендуется выполнить следующее:

- 1. Убедиться, что на плате Модуля установлена и подключена батарейка (элементы, размещенные на плате указаны на Рисунке 2.1);
- 2. Убедиться, что к плате Модуля подключен датчик температуры и влажности;
- 3. Замкнуть джампером контакты разъема РЗ на плате Модуля;
- 4. Включить Модуль выключателем В1 на плате Модуля;
- 5. Наблюдать кратковременное загорание светодиода D1 с периодичностью раз в 10 секунд. При этом происходит отправка плановых информационных сообщений (указаны в таблице 4.1) в сеть LoRaWAN, которые можно проконтролировать на сервере;
- 6. Выключить Модуль выключателем В1;
- 7. Снять джампер с разъема Р3 на плате Модуля.
- 8. Включить Модуль выключателем B1. Светодиод D1 постоянно гореть и мигать не должен. Отправка первого планового сообщения Модулем, произойдет по истечении периода, установленного при настройке;
- 9. Закрыть крышку Модуля и закрепить ее винтами.

Модуль устанавливается на любую твердую поверхность. Крепление осуществляется винтами через штатные отверстия в корпусе. Допустимо осуществлять крепление Модуля пластиковыми стяжками.

Датчик влажности и температуры подключается к соответствующим клеммам разъема Р4 (Рисунок 2.1) на плате Модуля. Кабель датчика вводится в корпус через гермоввод в боковой поверхности корпуса Модуля. Максимальное рекомендованное расстояние до подключаемого датчика температуры и влажности - 5 метров. Размещать датчик следует на твердой поверхности. Крепление осуществляется винтом через штатное отверстие в корпусе. Допустимо осуществлять крепление Модуля пластиковыми стяжками.

Примечание:

1. При монтаже Модуля следует стараться не размещать его непосредственно внутри металлических конструкций, т.к. при этом радиосигнал от Модуля может значительно ослабнуть;

21.10.2024 7-24 Редакция 2.12

- 2. Датчик температуры и влажности не следует размещать на солнце и зоне попадания жидкостей;
- 3. Датчик температуры и влажности не следует накрывать (оборачивать) чем-либо, так как при этом датчик не будет давать верные показания влажности.

Элементы подключения, управления, и контроля, размещенные на плате Модуля, показаны на Рисунке 2.1, описание их назначения дано в таблице 2.1.

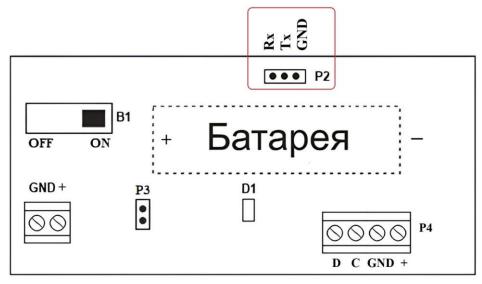


Рисунок 2.1 – Элементов подключения, управления и контроля на плате Модуля

Таблица 2.1 – Описание элементов платы Модуля

Разъем	Назначение	Описание
+	Питание «+» батареи	Подключение литий-тионилхлоридной батареи с
GND	Питание «-» батареи	аксиальными проволочными, либо проводными
		выводами
P2	UART	Разъем для подключения UART преобразователя
		интерфейсов
P3	Разъем	При замыкании контактов разъема, Модуль
	«Пуско-наладка»	начинает отправку пакетов с данными в режиме
		работы «Пуско-наладка» (с периодичностью раз в
		10 секунд).
		Примечание:
		Данный режим можно использовать в любое
		время для проверки работы Модуля
D1	Светодиод	Индикация работы Модуля
		Постоянное горение светодиода свидетельствует о
		наличии подключения к UART разъему на плате. А

		кратковременное загорание, о передаче сообщения в сеть LoRAWAN
B1	Выключатель	При поставке выключатель Модуля находится в положении «ОFF». При переводе его в положение «ОN», Модуль активируется и начинает отправку пакетов в соответствии с заданными режимом активации и периодом
P4	Клеммная колодка подключения датчика температуры и влажности	 D - данные (SDA) C - тактирование (SCL) GND - Напряжение питания «-» (Ground) + - Напряжение питания «+» (VCC)

3 Настройка

Настройка Модуля осуществляется на компьютере по интерфейсу UART (при помощи USB-UART преобразователя интерфейсов) с использованием АТ-команд с помощью программы-терминала (либо, с помощью специализированного программного обеспечения «НОВОУЧЕТ», поставляемого по отдельному запросу Заказчика), или downlink сообщений с сервера LoRaWAN. Перечень АТ-команд приведен и порядок их ввода указаны в главе 5. Список доступных команд можно увидеть при введении в терминал команды АТ+НЕLP.

Параметры интерфейса UART для работы в режиме настройки приведены в таблице 3.1.

Таблица 3.1 – Параметры интерфейса UART в режиме настройки

Параметр	Значение
Скорость (бит/сек.)	9600
Количество бит данных	8
Четность	нет
Количество стоповых битов	1

Подключение кабеля USB-UART-преобразователя осуществляется к разъему P2 Модуля, в соответствии с Рисунком 2.1. Доступ к разъему P2 осуществляется путем снятия верхней крышки корпуса Модуля, установленной на винты.

Для включения режима настройки Модуля, необходимо подключить в разъем UART и включить выключатель B1 (Рисунок 2.1). Признаком входа в режим «Конфигурации» является непрерывная световая индикация светодиода D1. Для выхода из режима «Конфигурации» следует выключить выключатель B1 и отключить разъем UART.

Примечание:

Для настройки Модуля на плате должна быть установлена и подключена батарейка.

Для работы Модуля необходимо ввести с помощью AT-команд нижеуказанные данные и параметры:

21.10.2024 10-24 Редакция 2.12

- 1. Вид активации Модуля в сети (команда AT+MODE). Модуль поддерживает два варианта процедуры активации в сети LoRaWAN:
 - ABP (Activation By Personalization) вариант, не требующий прохождения процедуры присоединения, ключи шифрования и адрес DevAddr устанавливаются в Модуль с помощью АТ команд. В данном режиме при подаче питания Модуль сразу начинает работать в соответствии с заранее заданными данными, необходимыми для работы в сети.
 - OTAA (Over-The-Air Activation) вариант, при котором требуется пройти процедуру присоединения (join procedure), во время которой вырабатываются сессионные ключи шифрования и адрес DevAddr. В данном режиме при подаче питания на Модуль осуществляет попытки регистрации в сети в заранее заданном частотном диапазоне с получением от базовой станции требуемой для работы информации.
- 2. Сетевые параметры (команды AT+DEVADR, AT+DEVEUI, AT+APPEUI, AT+APPKEY, AT+APPSKEY, AT+NWKSKEY):

Модуль поддерживает изменение следующих сетевых параметров (ключи и идентификаторы сетевых настроек), необходимых для регистрации Модуля в сети LoRaWAN:

- Идентификатор оконечного устройства "DevEUI";
- Адрес оконечного устройства "DevAddr";
- Сетевой сеансовый ключ оконечного устройства "NwkSKey";
- Сеансовый ключ приложения "AppSKey";
- Идентификатор приложения "AppEUI";
- Ключ приложения "АррКеу".

Примечание:

Заданные, при производстве Модулей сетевые параметры, поставляются вместе с Модулями.

3. Автоматическое управление скоростью радиообмена (команда AT+ADR).

Модуль поддерживает управление скоростью передачи данных и выходной мощностью радиопередатчика, т.е. реализуется адаптивная скорость передачи данных (adaptive data rate, ADR).

21.10.2024 11-24 Редакция 2.12

Примечание:

Рекомендуемый для данного Модуля режим управления скоростью – ADR включен.

4. Изменение типа отправки пакетов (команда AT+CONFIRM).

Модуль поддерживает два типа передачи пакетов:

- «С подтверждением» модуль будет дублировать отправку пакета до тех пор, пока не получит подтверждение от сервера, либо пока не закончится «Количество переповторов пакета» (по умолчании 8).
- «Без подтверждения» модуль отправляет пакет согласно заданного периода без дублирования пакета и не ждет подтверждения доставки от сервера.

Примечание:

При плохом уровне приема отправка сообщений «с подтверждением» может привести к преждевременному выходу источника питания из строя.

5. Период передачи пакетов (команда AT+PER).

Модуль позволяет передавать пакеты в сеть LoRaWaN с необходимой частотой.

Примечание:

С целью предотвращения пассивации батареи рекомендуется устанавливать период плановой отправки сообщений меньше 24 часов (86400 секунд).

6. Мощность передатчика (команда AT+EIRP).

Модуль позволяет задать мощность передатчика до 14 до 20 dB.

Примечание:

Устанавливается в зависимости от показателей уровня приема сигнала Модуля базовой станцией.

7. Класс радиоустройства (команда AT+CLASS).

Модуль позволяет задать класс радиоустройства LoRaWaN:

 «Класс А» – устройства класса А после каждой передачи открывают два коротких временных окна на прием. Данный класс рекомендуется

21.10.2024 12-24 Редакция 2.12

- использовать для устройств, получающих электропитание от батареек;
- «Класс С» устройства класса С находятся в режиме приема практически всё время за исключением промежутков, когда они передают сообщения.

Примечание:

Для обеспечения более продолжительного периода работы батареи Модуля данного исполнения, рекомендуется использовать класс А.

8. Настройка количества экстренных сообщений (команда AT+NAM). Модуль позволяет установить количество экстренных сообщений, отправляемых при выходе показателей угла и ускорения за заданные пределы.

Примечание:

Количество устанавливается исходя из потребностей.

9. Задержка отправки экстренных сообщений (команда AT+TMT). Модуль позволяет задать время задержки отправки экстренных сообщений. Суть данной настройки заключается в том, что после выхода контролируемого значения за пределы допуска, происходит задержка равная установленной параметром ТМТ. По истечении времени задержки, снова проверяется значение контролируемого параметра, и если параметр все еще находится за пределами уставки, формируется экстренный сигнал. Если же параметр вернулся в норму, экстренный сигнал не формируется.

Примечание:

Данная настройка необходима для предотвращения получения ложных экстренных сообщений, формируемых в случае возникновения кратковременных ложных отклонений значений температуры и влажности. Параметр устанавливается исходя из окружающих условий (например, периодически возникающее кратковременное повышение температуры), в месте размещений Модуля.

10. Установка порога срабатывания (уставки) по температуре (команда AT+TMAX, AT+TMIN).

21.10.2024 13-24 Редакция 2.12

Модуль позволяет задать значение температуры, при котором произойдет формирование экстренного сигнала и отправка сообщения в радиоканал LoRaWAN.

Примечание:

Порог устанавливается исходя из потребностей.

11. Установка порога срабатывания (уставки) по влажности (команда AT+HMAX, AT+HMIN).

Модуль позволяет задать значение влажности, при котором произойдет формирование экстренного сигнала и отправка сообщения в радиоканал LoRaWAN.

Примечание:

Порог устанавливается исходя из потребностей.

21.10.2024 14-24 Редакция 2.12

4 Описание информационного пакета

Полезная информация (текущая температура, влажность, и т.д.) передаются Модулем в сеть LoRaWAN и на сервер обработки данных в виде информационных пакетов (uplink).

Информационный пакет с данными показан в Таблице 4.1.

Таблица 4.1 – Информационный пакет Модуля

Размер	Описание	Примечание
2 байта	Текущая температура	В градусах Цельсия (°С),
2 байта	Значение уставки	(для получения истинного значение с
	минимального значения	точностью до десятых долей, параметр
	температуры	следует разделить на 10)
2 байта	Значение уставки	
	максимального значения	
	температуры	
1 байт	Текущая относительная	В процентах (% RH)
	влажность	
1 байт	Значение уставки	
	минимального значения	
	влажности	
1 байт	Значение уставки	
	максимального значения	
	влажности	
1 байт	Период опроса датчика	В секундах,
		где 0x0A (default)
1 байт	Статус превышения	00 – температура и влажность в
	уставки	норме относительно уставки,
		01 – превышение одной из уставок
		температуры
		10 –превышение одной из уставок
		относительной влажности
		11 – превышение уставок температуры
		и влажности
1 байт	Признак разряда батареи	00 – батарея в норме,
		01 – батарея разряжена

Информационный пакет на сервере отображается в виде 24 символов в кодировке ASCII, каждый символ которого это число в шестнадцатеричной системе. Пакет с информацией от действующего Модуля может иметь следующий вид:

01560000012c1c00000a0100

Расшифровка указанного пакета выше дана в таблице 4.2

Таблица 4.2 – Расшифровка пакета

Пакет	0156	0000	012c	1c	00	00	0a	01	00
Разм. фрагм.	2 байта	2 байта	2 байта	1 байт	1 байта	1 байта	1 байта	1 байта	1 байт
Опис. фрагм.	Текущая температура	Значение уставки минимального значения температуры	Значение уставки максимального значения температуры	Текущая относительная влажность	Значение уставки минимального значения влажности	Значение уставки максимального значения влажности	Период опроса датчика	Статус превышения уставки	Признак разряда батареи

По downlink запросу командой AT+INFO, можно получить информационный пакет об устройстве (показан в таблице 4.3), предназначенный для получения набора необходимых сведений об устройстве в начале эксплуатации при его активации в сети, а также получения данной информации по запросу в процессе эксплуатационного цикла.

Таблица 4.3 – Информационный пакет об устройстве

Размер	Описание	Примечание
1 байт	тип пакета	Информационный пакет устройства (Нех),
		где 0xC3 (default)

21.10.2024 16-24 Редакция 2.12

4 ~ 11	——	
1 байт	Причина отправки	00 – регистрация в сети
	сообщения	01 – по запросу
16 байт	Производитель	4E4F564F5543484554204C5444202020
		(NOVOUCHET LTD)
16 байт	Модель устройства	5348542d303220202020202020202020
		(SHT-02)
4 байта	Дата производства	в формате UNIX time
2 байта	Версия HW	Старший байт - major, младший – minor
		02 – Плата ТІLТ версия с антенной
2 байта	Версия Программного	Старший байт - major, младший – minor
	Обеспечения	
2 байта	Версия Протокола	01 – Индивидуальный протокол датчика
	Обмена	_
1 байт	Состояние батареи	00 – батарея в норме
	_	01 – батарея разряжена
4 байта	Количество	Общий счётчик передач в эфир, с учетом
	отправленных	переповторов NbTrans.
	сообщений	Счетчик не сбрасывается при отключении
		питания и при повторной активации
		(процедуры join) в сети.

5 АТ-команды

Модуль поддерживает набор AT-команд для настройки рабочих параметров по UART, а также с помощью downlink-сообщений для удаленного изменения настроек устройства (сообщения отправляются на FPort=2, AT-команды предварительно переводятся в шестнадцатеричный формат).

Требования к вводу АТ-команд, указанных в таблицах ниже:

- 1. Любая команда, передаваемая по настроечному порту UART в конце строки должна содержать управляющие символы "возврата каретки" и "перевода строки" ('\r', '\n', CR+LF, 0x0D, 0x0A). При передаче команды через сервер LoRaWAN данное требование необязательно;
- 2. Под символами "X" подразумеваются параметры, которые требуется ввести. Значения параметров вводятся после ввода непосредственно команды и знака равно. Пробелов между символами быть не должно (пример ввода способа регистрации в сети AT+MODE=O). При ошибке ввода Модуль вернет текст "ERROR";
- 3. Ввод осуществляется прописными (заглавными) символами;
- 4. Верный ввод информации в Модуль подтверждается возвратом текстового сообщения "ОК" от Модуля;
- 5. Числовые значения вводятся в десятичной форме;
- 6. Для контроля введенных по таблицам 5.1 и 5.2 настроек, применяется команда AT+GET (пример вывода по данной команде дан ниже);
- 7. Для контроля введенных по таблице 5.4 настроек применяется команда AT+KEY (пример вывода по данной команде дан ниже).

Примечание:

- 1. При вводе информации по UART возможны сбои с возвратом от Модуля текста "ERROR". В данном случае следует перепроверить вводимую команду и вводимое с ней значение. Если команда и значение верные, следует попытаться ввести их повторно;
- 2. При отправке команды в Модуль, в случае отсутствия подтверждения от Модуля в виде сообщения "OK", следует выполнить перезагрузку Модуля (отключить и включить питание);
- 3. После выполнения попытки изменения какой-либо настройки по UART, рекомендуется проверять фактическое изменение данной настройки командами AT+GET и AT+KEY.

21.10.2024 18-24 Редакция 2.12

Таблица 5.1 – Команды настройки Модуля

Команда	Описание	Примечание
AT+INFO	Запрос	Оправка информационного
	информационного	пакета об устройстве
	пакета об устройстве	(Таблица 4.3)
	(downlink-сообщение)	
AT+RECALL	Опрос вне	Производится отправка
	установленного периода	информационного пакета
	передачи	Модулем. Команда
	(downlink-сообщение)	целесообразна для режима
		работы в Class C
AT+TMIN=XX	Уставка	Задается в градусах Цельсия
	минимального	(°С), умноженных на 10
	значения температуры	(например, при
AT+TMAX= XX	Уставка	необходимости задании
	максимального	уставки в 25,5° С, вводить
	значения температуры	следует 255 целым числом).
		Варианты настройки:
		От -40 до +125
		(при установке 0 – параметр
		не контролируется)
AT+HMIN= XX	Уставка	Задается в процентах (%RH)
	минимального	Варианты настройки:
	значения влажности	От 0 до 100
AT+HMAX=XX	Уставка	(при установке 0 – параметр
	максимального	не контролируется)
	значения влажности	
AT+NAM=X	Количество отправки	До 5 внеплановых сообщений
	экстренных	с интервалом передачи 6-8
	сообщений	секунд.
		Варианты настройки:
		0 – 3 сообщения
		1 – 1 сообщение
		2 – 2 сообщения
		3-3 сообщения
		4 – 4 сообщения
		5 – 5 сообщений
		ВАЖНО:

info@novouchet.ru

		- Значение устанавливается в режиме работы «без подтверждения» (т.е. параметр AT+CONFIRM=0), в режиме работы «с подтверждением» (т.е.
		параметр AT+CONFIRM=1) значение вводиться не будет; - При установке
		AT+CONFIRM=1, значение NAM будет автоматически сброшено на 1.
AT+TMT=X	Задержка отправки сообщений тревоги	Задается в миллисекундах (мс) Варианты настройки: От 1 до 3600000 (до 1 часа)
AT+UTIME	Дата производства в формате UNIX	Задается один раз при производстве Модуля, и не подлежит изменению в эксплуатации

Таблица 5.2 – Команды настройки Модуля для работы в сети LoRaWAN

Команда	Описание	Примечание
AT+PER=XXXX	Период передачи	Задается в секундах
	сообщений	Варианты настройки:
		От 1 до 86400 (до 24 часов)
AT+MODE=X	Способ активации в	Варианты настройки:
	сети	A - APB
		O – OTAA
AT+CONFIRM=X	Тип отправки	Варианты настройки:
	сообщений	1 – с подтверждением
		0 – без подтверждения
AT+ADR=X	Автоматическое	Варианты настройки:
	управление скоростью	1 – включено
		0 – отключено
AT+CLASS=X	Класс	Варианты настройки:
	радиоустройства	A – Class A
		C – Class C
AT+EIRP= XX	Мощность	Варианты настройки:
	передатчика	От 14 до 20 dB

Таблица 5.3 – Команды запроса информации

Команда	Описание	Примечание
AT+MSG	Запрос	Отображение актуальных
	информационного	значений в формате
	пакета Модуля	информационного пакета
		Модуля (Таблица 4.3)
AT+GET	Запрос текущих	Отображение параметров
	параметров настройки	настройки, указанных в
		таблице 5.1 и таблице 5.2
		Пример вывода по данной
		команде дан ниже.
AT+KEY	Запрос сетевых	Отображение сетевых
	параметров	параметров (указаны в таблице
		5.4).
		Пример вывода по данной
		команде дан ниже.
AT+CUR	Запрос на текущие	Отображение актуальных
	данные	значений в строчном формате
AT+HELP	Запрос доступных для	Часть отображаемый команд,
	ввода АТ-команд	доступна лишь один при
		первичной инициализации
		(например команды AT+SN,
		AT+UTIME)

Примечание:

Команды запроса информации, приведенные в таблице 5.3 отображаются только по UART.

Таблица 5.4 – Команды настройки сетевых параметров

Команда	Описание	Примечание
AT+DEVADR= XXXX	Ввод адреса конечного	Задается при
	устройства	конфигурации Модуля
	"DevAdr"	перед его монтажом на
AT+DEVEUI=XXXX	Ввод идентификатора	объект.
	конечного устройства	
	"DevEui"	
AT+APPEUI=XXXX	Ввод идентификатора	
	приложения	
	"AppEui"	

AT+APPKEY=XXXX	Ввод ключа приложения	
	"AppKey"	
AT+APPSKEY= XXXX	Ввод сеансового ключа	
	приложения	
	"AppSKey"	
AT+NWKSKEY=	Ввод сетевого сеансового	
XXXX	ключа конечного	
	устройства	
	"NwkSKey"	

Возможный вид (для примера) вывода информации по команде AT+GET показан ниже:

VER=SHT-2.12.RU

AT+SN=34815

AT+UTIME=0

AT+MODE=A

AT+CLASS=A

AT+CONFIRM=1

AT+ADR=1

AT+EIRP=14

AT+PER=60

AT+TMT=5000

AT+NAM=1

AT+TMIN=0

AT+TMAX=250

AT+HMIN=0

AT+HMAX=80

Возможный вид (для примера) вывода информации по команде AT+GET показан ниже:

AT+SN=34815

AT+DEVADR=DF743A6A

AT+DEVEUI=000085F200009CD3

AT+APPEUI=0000010000AAAAAA

AT+APPKEY=50876437B69CB99FE9B4D01B8F7B40CF

AT+APPSKEY=617BBD63DAEAD407DCEE4AFC3BBF1203

AT+NWKSKEY=2E032B31A8FBF970C492DA4260662E4E

6 Изготовитель

ООО «НОВОУЧЕТ»

Адрес: 420032, Республика Татарстан, г. Казань, ул. Гладилова, д. 53

Телефон: +7(843)297-82-98 Почта: info@novouchet.ru Сайт: www.novouchet.ru

21.10.2024 23-24 Редакция 2.12

7 Лист регистрации изменений

Дата	Версия	Изменения
16.11.2023	1.0	Исходная версия.
25.01.2024	2.10	Серийная версия устройства.
23.08.2024	2.11	1. Добавлена возможность установки задержки сигнализации при превышении пороговых значений; 2. Добавлен режим «Пуско-наладки»; 3. Изменен алгоритм отправки первого сообщения после включения.
21.10.2024	2.12	 Доработано ПО микроконтроллера в части отображения информации выдаваемой через UART; Доработано ПО микроконтроллера в части контроля вводимых параметров; Изменен алгоритм входа в режим «Конфигурации»; Уточнено техническое описание.